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Abstract: In this paper, we describe a discrete-time formalism for describing the dynamics of the size-at-age distribu-
tion of a cohort of individuals exhibiting irreversible von Bertalanffy growth in a statistically uniform random environ-
ment. This formalism yields a highly efficient numerical implementation, which is particularly suited to automatic
optimization. In the special case where mortality is sufficiently size-independent not to vary substantially across the
bulk of the size distribution at any given age, we can further increase this efficiency by deriving compact update rules
for the mean and coefficient of variation of size-at-age. In this case, we also demonstrate that the depensatory effect of
random growth variability and the compensatory effect of deterministic von Bertalanffy growth balance to yield an
attracting (initial condition independent) trajectory of mean length and length coefficient of variation against age. We
demonstrate the applicability and extensibility of this formalism by two exemplary applications — juvenile salmonids
and demersal cod.

Résumé : Nous présentons dans ce travail un formalisme à temps discret pour décrire la dynamique de la distribution
de la taille en fonction de l’âge chez une cohorte d’individus qui ont une croissance de type von Bertalanffy irréver-
sible dans un environnement uniformément aléatoire du point de vue statistique. Ce formalisme permet une application
numérique très efficace qui se prête particulièrement bien à une optimisation automatique. Dans le cas particulier où la
mortalité est suffisamment indépendante de la taille pour ne pas varier essentiellement sur la plus grande partie de la
distribution des tailles à chacun des âges, il est possible d’augmenter l’efficacité en élaborant des règles compactes de
mise à jour pour la moyenne et le coefficient de variation de la taille en fonction de l’âge. Dans ce cas, nous démon-
trons que l’effet d’allee provoqué par la variabilité aléatoire de la croissance et l’effet compensatoire de la croissance
déterministe de type von Bertalanffy s’équilibrent pour donner une trajectoire attractive (indépendante des conditions
initiales) de la longueur moyenne et du coefficient de variation de la longueur en fonction de l’âge. Nous démontrons
que ce formalisme peut être étendu en l’appliquant à deux exemples — les jeunes saumons et les morues démersales.

[Traduit par la Rédaction] Gurney et al. 653

Introduction

An individual’s calendar age always increases at the same
(constant) rate, so the dynamics of population age structure
are extremely simple. In contrast, the somatic growth rate of
apparently similar individuals often varies widely (Sebens
1987; Pfister and Peacor 2003), so understanding the dy-
namics of population size structure is a much greater theo-
retical challenge.

Population size structure often plays a key role in deter-
mining dynamics, influencing average fecundity (e.g.,
Marteinsdottir and Begg 2002); interspecific interactions,

such as predation (e.g., Wootton 1992); and intraspecific in-
teractions such as cannibalism (e.g., DeAngelis et al. 1979;
Brunkow and Collins 1998). In exploited populations, size
structure changes can have substantial economic as well as
ecological impacts (Rose 2004).

Ricker (1958) distinguishes between growth compensation
(cohort size-at-age variability decreases with time or age)
and growth depensation (cohort size-at-age variability in-
creases with age). Pfister and Stevens (2002) identify three
classes of mechanism that can lead to growth depensation:
size dependence of growth rate, individual-to-individual
variability in growth efficiency, and statistically independent
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(uncorrelated) stochastic variation in individual growth per-
formance.

The first two of these classes (deterministic size depend-
ence of growth and fixed individual-to-individual differ-
ences) yield relatively benign mathematical representations
and are thus the most highly represented in the literature
(e.g., DeAngelis and Huston 1987; de Roos et al. 1992;
Pfister and Peacor 2003). Stochastic variations in individual
growth that are uncorrelated with those experienced by oth-
ers in the population complicate the analysis considerably.
Their obvious importance has led to the widespread use of
individual-by-individual simulations to investigate their de-
tailed implications (e.g., Pfister and Stevens 2002; Fujiwara
et al. 2004, 2005).

Practical difficulty in fitting individual-by-individual sim-
ulations to observational data has led to recent interest in
more analytic approaches. Bardos (2005) describes the ap-
plication of a probabilistic variant of the Gompertz (1825)
model to size-increment data for abalone (Haliotus sp.).
Gudmundsson (2005) has fitted an heuristically derived sto-
chastic variant of the von Bertalanffy model (von Berta-
lanffy 1938) to length-at-age statistics for Icelandic Atlantic
cod (Gadus morhua).

Gurney and Veitch (2007) have proposed a unified frame-
work, employing the coefficient of variation (CV) as the key
measure of length-at-age variability, within which all three
sources of size-at-age variability can be represented. The
central conclusions of this work are that uncorrelated sto-
chastic resource variabity is always depensatory, but deter-
ministic growth is compensatory unless the growth rate
increases faster than exponentially with size. Further, the
combination of stochastic depensation with compensatory
deterministic dynamics implies that a growing cohort will
exhibit an initial-condition-independent trajectory of CV
against length.

Although the continuous size–time framework proposed
by Gurney and Veitch (2007) is suited to analytic investiga-
tion, it is a rather cumbersome vehicle for simulation and
hence for fitting to observational data. Moreover, where
growth is irreversible, its key dynamic equation is an
approximation — albeit a good one for many realistic cases.
In this paper, we propose a discrete size–time formalism,
which exactly represents irreversible growth and also results
in a very economical numerical scheme, thus making it par-
ticularly suited to data fitting. In the special case where mor-
tality is size-independent, we are able to derive explicit
update rules for the moments of the size-at-age distribution,
thus gaining further increases in computational efficiency as
well as considerable insight into the influence of particular
parameter choices on model predictions.

To illustrate the utility of this formalism, we fit length-at-
age data sets: for salmonids growing in two contrasting UK
rivers and for Atlantic cod caught by the International Bot-
tom Trawl Surveys (IBTS) in European shelf waters close to
the UK. In each case the model is able to reproduce key
qualitative and quantitative features of the observed length-
at-age statistics, and we can observe regional and species-
specific changes in the best-fit parameters that are
compatible with known features of the biogeography of the
species concerned.

The model

Here we develop an exact representation of the age–size
dynamics of a cohort of individuals, each exhibiting irrevers-
ible growth according to the pattern proposed by von Berta-
lanffy (1938). Our central assumption will be that the cohort
consisists of a group of functionally identical individuals
who are exposed to a statistically uniform environment.
Size-at-age variability is thus a product of the combined ef-
fects of variability in size at recruitment and individual-to-
individual variability in growth rate. The model we present
is related to that described by Gurney and Veitch (2007) but
differs in two key aspects: first, its representation of irrevers-
ible growth is exact rather than approximate; second, it im-
plies a considerably more economical numerical scheme.

To set the context for this presentation, we first set out an
energetic derivation for the deterministic model of individual
growth proposed by von Bertalanffy (1938). This derivation
is given in more detail by Gurney and Nisbet (1998), who
consider reproductively inactive individuals with carbon
weight (W), which changes at a rate given by the difference
between assimilation and maintenance rates (A and M, re-
spectively), so that

(1) d dW t A M/ = −

They then make two further assumptions. First, M is propor-
tional to W (with a constant of proportionality m) so that

(2) M mW=

Second, A scales with the square of body length L (with con-
stant of proportionality a) and has a Holling type II depend-
ence on food abundance F (with half saturation FH) so that

(3) A aL F F F F= = +2
Hwhereφ φ( ) /( )

A final assumption that W is proportional to L3 (with a
constant of proportionality w) then implies that eq. 1 can be
recast to tell us the rate of change of length in terms of its
current value and food abundance. At this point, we incorpo-
rate our key assumption that while weight can both increase
and decrease, animals whose weight is decreasing retain
their current length. Using the notation [x]+ = max(0, x) and
defining α � a/(3w) and µ � m/3 to make the result as com-
pact as possible, we arrive at the following dependence of
individual growth rate on current length and food environ-
ment:

(4) d dL t F L/ [ ( ) ]= − +α µφ

Our stochastic extension of this model assumes that
individual-to-individual variability in growth rate is the
product of stochastic variability in food availability, F, both
in time and between individuals. As a modelling approxima-
tion, we assume that the value of F experienced by each in-
dividual remains constant for periods of length τ (which we
call the growth correlation time). We further assume that F
takes only values that are either large enough or small
enough compared with FH for φ to be regarded as either 1 or
0. Finally, we assume that in each growth period, φ takes the
value 1 with probability p and 0 with probability 1 – p.

This picture of feeding and growth in a random environ-
ment necessarily relies on a number of fairly heroic biologi-
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cal assumptions. Two of the more egregious of these are that
(i) an individuals feeding rate is assumed to be completely
correlated (i.e., constant) within the growth correlation time
and not at all correlated thereafter, and (ii) any individual
who was unable to feed during one growth period can start
growing instantaneously upon entering a growth period in
which φ = 1. Both these assumptions are clearly wrong in
detail and must stand or fall on the ability of the resulting
formalism to mimic real observations.

For compactness, as well as consistency with the energy
budget literature, we define L∞ to represent the asymptotic
length of an individual growing with φ = 1, thus

(5) L∞ = α µ/

Hence, the growth of an individual with length Lt at time t
is described during the time increment t → t + τ by

(6) d d
with probability

0 with probability 1
L t

L L p

p
/

( )
=

−
−




∞µ



where

(7) L t Lt( ) =

We note that provided p > 0, eq. 6 implies that any indi-
vidual who survives long enough must eventually reach the
food-independent asymptotic length defined by eq. 5. This
contrasts markedly with the conventional deterministic pic-
ture of von Bertalanffy growth under constant food condi-
tions, where asymptotic length is found to be proportional to
food abundance. However, where the assimilation rate varies
stochastically within fixed bounds, it is clear that an irrevers-
ible growth process must eventually take all individuals to
the asymptotic length associated with constant growth at the
upper bound of the assimilation rate (i.e., L∞).

Having established our picture of the dynamics of individ-
ual growth, we now turn our attention to the dynamics of the
cohort. Although eq. 4 allows us to distinguish individuals
entirely on the basis of their length, the key to a mathemati-
cally and computationally tractable representation is to
transform L into a new variable:

(8) q L L= − −∞ln[ ]

which we shall refer to as the development index. Given our as-
sumption that φ takes the values 1 and 0, with probabilities p and
1 – p, respectively, we see that during any period t → t + τ , the
rate of change of the development index is

(9) d d
with probability

0 with probability 1
q t

p

p
/ =

−




µ

We now use nq,t to denote the number of individuals in the
cohort with development index in the range q → q + µτ at
time t. Equation 9 shows that any individual with q in q →
q + µτ at time t that is still alive at time t + τ will, at that time,
have q in q + µτ → q + 2µτ (with probability p) or will have
an unchanged development index (with probability 1 – p).
Hence, if we use Sq,t to denote the probability that an individ-
ual with q in q → q + µτ at time t is still alive at time t + τ,
we can see that

(10) n p S n pS nq t q t q t q t q t, , , , ,( )+ − −= − +τ µτ µτ1

We see immediately that eq. 10 exactly describes the dy-
namics of the size distribution during a growth process in
which individuals cannot shrink, but must either retain their
current size or exhibit positive growth.

Equation 10 provides a very simple route to simulating
the trajectory of the development index distribution. How-
ever, the development index is neither directly observable
nor intuitive, so we normally calculate either a length distri-
bution or summary statistics, such as mean length.

The easiest relationship to derive is that between the de-
velopment index distribution and simple summary statistics.
We can see from eq. 8 that an individual with development
index q has length Lq, where

(11) L Lq
q= −∞

−e

The expectation values of L and L2 over the population
length distribution at time t are thus given by sums over all
values of q, thus

(12) � , �,

,

,

,

L
L n

n
L

L n

n
t

q q t

q t

t
q q t

q t

= =∑
∑

∑
∑

2

2

The variance (σt
2) and CV (ct) of L at time t are then cal-

culated from

(13) σ
σ

t t t t
t

t

L L c
L

2 2
2

2= − =� ( � ) ,
�

To transform the development index distribution into a
length distribution, we note that if NL,t represents the number
of individuals with lengths in L → L + dL then

(14) N
n

L q
nL t

q t q
q tq ,

,
,

/
= =

d d
e

We illustrate the result of a typical calculation using this
formalism (Fig. 1) and in particular the raw development in-
dex distribution calculated from repeated applications of
eq. 10 (Fig. 1a). The initial, very narrow q distribution is
spread steadily by the diffusive effect of variable growth
rate. The same results transformed to a length distribution
using eq. 14 (Fig. 1b) show the combined effect of the com-
pensatory deterministic dynamics (bringing individual
growth trajectories closer) and the depensatory effect of
growth rate variability (spreading them apart).

Despite the formal differences between the model de-
scribed here and that analysed by Gurney and Veitch (2007),
their work leads us to expect that when a system shows com-
pensatory deterministic dynamics combined with sto-
chastically varying growth, the outcome will be that the CV
of length will rapidly converge to an initial condition-
independent trajectory (Figs. 1c and 1d show that this does
indeed occur).

Size-independent mortality

Length-at-age statistics
If the step-to-step survival is size-independent, that is

Sq,t = St, then multiplying both sides of eq. 10 by Lq and
summing over all q, using eq. 11 to relate Lq–µτ to Lq, shows
that
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(15) � � ( � )L L L Lt t t+ ∞= + −τ γτ

where, for compactness, we define a maximum relaxation
rate (ξ) and an expected relaxation rate (γ) as

(16) ξ τ γ ξµτ= − =−( )/1 e and p

A very similar, although rather more algebraically taxing, ar-
gument yields an update rule for �L2 , thus

(17) � � [ ( ) � ( ) � ]L L L L L Lt t t t
2 2 22 2 1 2+ ∞ ∞= + + − − −τ γτ ξτ ξτ ξτ

In cases where mortality is size-independent, eqs. 15 and 17
provide a noticeably more efficient route to results such as
those in Figs. 1c and 1d than a repeated iteration of eq. 10.

We note that the trajectory produced by iterating eqs. 15
and 17 from a starting point {� , � }L L0 0

2 with {µ, p, τ} = {µ1, p1,
τ1} is not uniquely related to the parameters. For example,
eq. 15 shows that the mean length trajectory from �L0 with
{µ, p, τ} = {µ2, p2, τ1/2} is identical to that produced with
{µ, p, τ} = {µ1, p1, τ1} at the times when the trajectory with
τ = τ1 is defined (that is, at t = nτ1 with n being a positive in-
teger), provided only that the two parameter sets imply val-
ues of γ (say γ1 and γ2), which satisfy

(18) γ γ γ τ
1 2

2 11
4

= −

 




A similar, but more algebraically taxing, argument yields an
independent requirement on γ and ξ for the process to yield
an identical trajectory for �L2 . Taken together, these define
values µ2 and p2 such that {µ2, p2, τ1/2} implies an identical
trajectory to {µ1, p1, τ1}.

A similar argument can be developed for any other value
of τ that is a submultiple of τ1. We conclude that to define a
unique parameter set yielding any specified trajectory, we
must first select a value for τ and then find the unique values
of p and µ corresponding to that trajectory. This has obvious
implications for the data-fitting process that occupies the lat-
ter part of this paper.

Quasi-stationary CV
Our simulations suggest that in this model, as in its

continuous-time relative investigated by Gurney and Veitch
(2007), the combination of compensatory deterministic dy-
namics and random growth rate variation will lead to a
quasi-steady-state CV for size-at-age. Recalling the defini-
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Fig. 1. Growth of immortal individuals under constant conditions is illustrated. The cohort shows immortal individuals exhibiting von
Bertalanffy growth (eq. 4 with a time step of 1 day) with α = 12.5, µ = 0.05, and p = 0.5. (a) Development index distributions are
shown for the following times (t in days; peaks from left to right): t = 10 (dashed), t = 20 (dot-dashed), t = 40 (longer-dashed), t = 80
(dot-dot-dashed), and t = 120 (solid) for a run with all individuals having initial length 50. (b) Implied length distributions for the
same run at the same times. (c) Mean length against age for two runs: one with all individuals of initial length 50 mm (solid) and the
other with initial lengths normally distributed with a mean of 50 mm (dotted). Note that these two lines are coincident, so only the
solid line is visible. (d) Coefficient of variation (CV) for length plotted against age for the same two runs.



tions in eq. 13, we see that the CV remains constant with
age (time) if

(19)
� ( � )

( � )

� ( � )
( � )

L L
L

L L
L

t t

t

t t

t

2 22

2

2

2
+ +

+

− = −τ τ

τ

Substitution from eqs. 15 and 17, followed by a considerable
quantity of routine algebra, yields an expression for the
quasi-steady-state value of �L2 , which after a small amount of
further manipulation gives the quasi-steady-state coefficient
of length variation as

(20) c
L L

L L L L L
t

t

t t t

*
( ) ( � )

( � ) ( � ) ( / ) �
=

− −
− − +

∞

∞ ∞

ξ γ
γ ξ τ

2

2 2 2

We see from eq. 16 that when µτ << 1, ξ ≈µ and γ ≈µp, so
that both are formally indendent of τ. In the more general
case, we expect that these two coefficients will depend only
weakly on τ. Thus we expect that for any given length, the
quasi-stationary CV increases as the difference between ξ
and γ increases — that is, as p decreases. We also see that it
increases slowly with τ unless µτ << 1, when it becomes
proportional to τ.

Equation 20 also tells us that the quasi-steady-state CV
for length-at-age falls with increasing mean length (and
hence with age), going asymptotically to 0 as �L approaches
L∞. We thus expect that the trajectory of CV against age pre-
dicted using eqs. 15 and 17 will be considerably above that
implied by eq. 20. Comparison of the values predicted by
eq. 20 with values from explicit simulations such as those in
Fig. 1 confirms this supposition. Typical erors are 10%–
30%, so we conclude that while eq. 20 plays an important
role in allowing us to understand the way in which model
parameters control the predicted variability and can provide
a useful approximation to likely observed variability, it can-
not provide a route to accurate estimates of the length-at-age
variability implied by any given set of model parameters.

Salmonids in two UK rivers

The data
To illustrate the formalism described above, we examine

three sets of observations of wild juvenile salmonids grow-
ing in a river environment. The earliest data set concerns
Atlantic salmon (Salmo salar) parr observed between 1998
and 2003 by staff from the Fisheries Research Services
Freshwater Laboratory during regular electrofishing surveys
in the Girnock Burn, an upland tributary of the River Dee in
northeast Scotland. A full description of the site (at
57°00′N, 3°08′W) can be found in Buck and Hay (1984).
On first capture, individuals longer than 70 mm were scale-
sampled and marked before being weighed, measured, and
released. Recaptured individuals were identified, weighed,
and released. Length/weight trajectories from long-surviving
individuals observed in the first year of this programme have
been modelled by Jones et al. (2002), and their growth pat-
terns have been subjected to statistical analysis by Bacon et
al. (2005). In the present work, we use observations of
length-at-age for the 1997 hatch class (Fig. 2c).

During the later part of the Girnock electrofishing cam-
paign, brown trout (Salmo trutta) caught contemporaneously
with the salmon parr were treated similarly. We use the re-
sulting series of length-at-age observations for the 2002
trout hatch in the Girnock Burn (Fig. 2b) as one of our test
data sets.

During 2003, staff from the Centre for Ecology and Hy-
drology carried out an analogous series of electrofishing sur-
veys on the brown trout population of the River Frome — a
lowland river in the south part of the county of Dorset, Eng-
land (50°40′N, 2°15′W). Although this series of observa-
tions did not recapture any single cohort throughout its
lifetime, we have been able to compile a composite series of
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Fig. 2. Length (mm) against age (days from 1 January in year of
hatch) for (a) brown trout (Salmo trutta) observed during 2002–
2003 in the River Frome, (b) trout from the 2002 hatch observed
in the River Girnock, and (c) Atlantic salmon (Salmo salar) parr
from the 1997 hatch observed in the River Girnock.
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length-at-age observations (Fig. 2a) covering ages from ap-
proximately 6 months to 4 years.

Length-at-age statistics
To fit this data, we derive values of the mean and CV for

length at a series of ages. To minimize uncertainty, we need
to make each sample as large as possible, but the number of
animals observed at any exact age value is small, which
implies the need to pool the observations. After some experi-
mentation, we found that a window of 50 days (i.e., observa-
tions at a nominal 500 days represent ages from 475 to
525 days) gave the best results. For each sample, we deter-
mined the mean and CV of length at (nominal) age and then
estimated the uncertainty in each derived value by construct-
ing 1000 bootstrap resamples in the manner described by
Davison and Hinkley (1997) (the results are shown in Fig. 3).

Data fitting
For reasons of parsimony, we assume that the mortality

suffered by the growing cohort is length-independent, so we
can fit the variant of the model defined by eqs. 15 and 17.
The analysis of this model formulation in the Introduction
section showed that any specific trajectory produced with
parameters {µ, p, τ} from a given initial condition can also
be produced by other values of this parameter triplet. To ob-
tain a one-to-one relationship between trajectories and pa-
rameters, we must use additional evidence to select an
appropriate value for one of the three parameters. In this
case, we have no such additional evidence, so we
arbitrarility set τ to a convenient value, namely τ = 10 days.

Comparing the data (Fig. 3) with the trajectories that this

model predicts for a cohort growing under constant condi-
tions (Fig. 1) shows that all three pairs of age–length and
age–CV trajectories contain features that cannot be predicted
by eqs. 15 and 17 with constant parameters. Specifically,
each pair of trajectories exhibits repeated episodes in which
the rate of increase of the mean and the rate of decrease of
the CV both rise sharply, remain high for a short period, and
then fall back. These episodes recur at intervals of almost
exactly 365 days, so they appear to affect all year classes
simultaneously in the Frome trout data and also affect the
year classes we observe in successive years in the Girnock
at the same time each year.

In the model defined by eqs. 15 and 17, increasing the
growth probability, p, increases the rate of increase of the
mean and the rate of decrease of the CV. A natural way to
model the growth pattern shown in Fig. 3 is thus to set p
to a high value (say pg) during some growing season and
to a lower value (say pw) during the rest of the year. We
define age as elapsed time from 1 January in the year of
hatch, so an individual is aged a on a day of the year (Ty)
given by

(21) T a ay( ) = mod 365

We shall regard the growing season as extending from a time
of year U days from 1 January to a time D days from the
same datum. For fitting purposes, we require a continuous
relation among U, D, and p. To achieve this, we derive the
value of p for an update, which increments age from a →
a + τ from a piece-wise continuous function, which changes
linearly from pw to pg between U and U + τ and returns lin-
early from pg to pw between D and D + τ, i.e.

(22) p

p T a U T a D

p T a U T a D

p

w y y

g y y

w
=

< > +
> + <

+

if or

if and

( ) ( )

( ) ( )

τ
τ

( )[ ( ) ]/ ( ) ( )

( )[

p p T a U T a U T a U

p p p
g w y y y

g g w

− − ≥ < +
− −

τ τif and

T a D T a D T a Dy y y( ) ]/ ( ) ( )− ≥ < +









 τ τif and

The full list of optimizable parameters for the extended
model defined by eqs. 15, 17, and 22 is given in Table 1.

To fit this model to one of the data sets shown in Fig. 3,
we define a single observation objective as the ratio of the
absolute difference between predicted and observed values
to the range between the 95% confidence limits, a trajectory
objective as the mean of the observation objectives for all
the observed points on that trajectory, and the overall objec-
tive as the mean value of the two trajectory objectives.

The parameter set is optimized by minimizing the overall
objective with predicted trajectories starting at the time of
the first observation, with mean length set to �Li and length
CV set to ci. The optimization process uses the method of
boostrap restarting advocated by Wood (2001). This begins
with a basic optimization (in this case using the Nelder–
Meade algorithm implemented in the R routine “optim”)

from an arbitrary starting point to achieve a starting parame-
ter set and objective value. It proceeds through a series of
cycles in which the same objective is minimized over a set
of data generated from a bootstrap resample of the original
observations; the resulting parameter set is used as the start-
ing point for a new optimization on the target data. If this
process produces a lower objective than the current best
value, its parameters become the current best estimate of the
fit parameters and the accompanying objective becomes the
new target value. We repeated this cycle 10 times to obtain
optimal parameters from a given start point and repeated the
whole process 100 times from randomly chosen start points,
with the overall lowest objective being used to define the
best-fit parameters given in Table 1.

The quality of fit implied by the best-fit parameters for
the three data sets is illustrated (Fig. 4). We see that the



extended model captures the key features of all three data
sets — namely the rapid increase in mean length during the
yearly growing season accompanied by a substantial drop in
variability, the downward trend in variability with increasing
age, and the saturating (von Bertalanffy) form of the mean
length curves leading to year-on-year decreases with age in
the size of the yearly growth increment.

To obtain confidence limits for the best-fit parameters, we
again used the method of bootstrap resampling (Davison and

Hinkley 1997). We first created a group of 500 pairs of
trajectories of mean length-at-age and length-at-age CV by
resampling the original set of observations and then recalcu-
lating the length–age statistics. We refitted each of these
new target data sets using an objective function identical to
that used in the determination of best-fit parameters, except
that to minimize computational effort, the single observation
objective was defined as the ratio of the absolute difference
between the predicted and observed values for the new data
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Fig. 3. Length-at-age statistics for wild salmonids: (a and b) brown trout (Salmo trutta) observed during 2002–2003 in the River
Frome, (c and d) trout from the 2002 hatch in the River Girnock, (e and f) Atlantic salmon (Salmo salar) parr from the 1997 hatch in
the River Girnock. Panels a, c, and e show mean length-at-age (points determined from data pooled in 50-day windows) together with
95% confidence limits (dotted lines determined from 1000 bootstrap resamples per window). Panels b, d, and f show the coefficient of
variation (CV) for length-at-age (points) and 95% confidence limits (dotted lines) determined for the same windows.



set to the confidence limit range for the equivalent point in
the original data set. Each refit process was started from a
single, randomly chosen point and restricted to 10 bootstrap
restarts per data set. From the resulting 500 refits, we se-
lected those that achieved an overall objective within 10%
of the best-fit objective for the original data set and used this
sample to determine 95% confidence limits (Table 2). In ad-
dition, we checked the fitted parameter sets for pair-wise
correlations. Most pairs were not significantly correlated,
and even in those few cases where statistically significant
correlations were found, the proportion of the observed vari-
ability explained was small.

Comparing the best-fit values and confidence limits (Ta-
bles 1 and 2) shows the results of this fitting exercise to be
consonant with our biological and statistical expectations.
The Frome data set is longer, less noisy, and has much more
in the way of distinctive pattern than those from the Gir-
nock, so we are unsurprised to notice that the fitting process
has defined the parameters much better in this case. The
Girnock trout data set is the shortest and noisiest of the
three, and we are thus equally unsurprised to observe that
the fitted parameters are the most poorly defined.

Nonetheless, we can see that L∞, which we expect to de-
pend principally on the basic species physiology, is
indistinguisable between the two trout data sets and signifi-
cantly lower in the case of the salmon parr.

Since the Frome is a lowland river some 400 km south of
the Girnock, we are similarly encouraged to observe consid-
erable differences in trout maintenance rates (µ), with lower
values in the Girnock than in the Frome. In the Girnock, the
maintenance rate for salmon parr is substantially greater
than that for trout.

Surprisingly, the start of the growing season turns out to
be essentially site- and species-independent, while its end
clearly depends on site (but not species), being later in the
high northerly Girnock and earlier in the low southerly
Frome.

Atlantic cod on the European continental
shelf

The data
The IBTS are multinational progammes to determine the

spatial distribution of a number of demersal species, includ-
ing Atlantic cod (Gadus morhua), over shelf seas, such as

the North Sea, between the UK and the European mainland.
The main activity of these surveys involves standard trawl
tows using a carefully defined protocol (IBTS Working
Group 2004), with the catch being length-classified and then
counted. To permit the resolution of this length-classified
data into year classes, otoliths are collected from a (nomi-
nally fixed) number of representatives of each length class
and analysed to determine the age of the animal (modulo
1 year) and hence its year class.

The IBTS otolith data provides us with a set of individu-
als for whom we know both length and age (as defined in
the previous section, namely time from 1 January in the year
of hatch). However, the protocol used to select the sub-
sample from which otoliths are collected means that its
length-at-age distribution is very unlikely to be the same as
that of the population at large.

To make proper use of the IBTS age data, we must em-
ploy it in the way the survey designers intended. We first
pool the otolith data for all years over some region and
intrayear period, so as to obtain a sensible number of oto-
liths for each length class. The pooled otolith data is then
used to determine the proportional age-class composition of
each length class at that time of year. This in turn allows us
to derive the absolute age distribution for fish of each length
class in every haul within that spatial area at the time of year
of interest. Extracting the abundance of any given age class
from all length classes present in a haul then gives us the
length distribution for that age in that haul. Since this distri-
bution is based on otolith data pooled across times of year
and spatial locations, it is consistent to finally pool the de-
rived length-at-age distributions across the same spatial area
and equivalent age widows.

We show (Fig. 5) length-at-age statistics derived from
IBTS data for the period 1991–1999 pooled temporally by
quarter and spatially for the German Bight (53.5°N, 3°E ×
55.5°N, 8°E), the Jutland Bank (55.5°N, 3°E × 57.5°N,
8°E), and Viking (60°N, 1°E × 62°N, 7°E).

Data fitting
In this section, we again make the parsimonious assump-

tion that mortality is size-independent. Although the yearly
environmental cycle experienced by demersal fish such as
cod is likely to be less dramatic than that to which salmon
parr are exposed, one would nonetheless expect season vari-
ations in their rate of growth. However, the temporal resolu-
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Frome Girnock

Parameter Symbol (units) Trout Trout Salmon

Initial mean length �Li (mm) 66.7 50.7 69.7
Initial length CV ci (%) 4.47 13.1 8.63
Asymptotic length L∞ (mm) 306 309 148
Maintenance rate µ (%·day–1) 0.456 0.122 0.746
Growth probability (summer) pg 0.697 0.872 0.604

Growth probability (winter) pw 0.149 0.152 0.023
Growing season start U (day of year) 71.9 39.6 72.3
Growing season end D (day of year) 147 186 188

Note: Trout refers to brown trout (Salmo trutta); salmon refers to Atlantic salmon (Salmo salar).

Table 1. Best-fit values for salmonid parameters fitted with size-independent mortality and
the growth correlation time (τ) set to 10 days.



tion of our test data set is insufficient to allow unequivocal
identification of a growing season, so we fit the basic model
defined by eqs. 15 and 17, with τ arbitarily set to a conve-
nient value (τ = 10 days).

Using the same fitting protocol as before, we obtain the
best-fit parameters shown in Table 3. We show the quality of
fit implied by these parameters (Fig. 6) and see that with the

exception of a possible misfit to the average length-at-age
curves for individuals over 5 years old, the fitted model suc-
cessfully captures the broad features of all three target data
sets — namely the saturating character of the mean length-
at-age and the concave downward trend of the CV.

Confidence limits for the parameters in Table 3, obtained
using exactly the same protocol before, are shown in Ta-
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Fig. 4. Fitted length-at-age statistics for wild salmonids. Panels a, c, and d show fitted values (solid lines) and 95% confidence limits
for observed values (dotted lines) of mean length-at-age. Panles b, d, and f show fitted values (solid lines) and 95% confidence limits
for observed values (dotted lines) of coefficient of variation (CV) for length-at-age. Panels a and b refer to brown trout (Salmo trutta)
observed in the River Frome in 2002–2003, c and d refer to the 2002 trout hatch in the River Girnock, and e and f refer to the 1997
Atlantic salmon (Salmo salar) parr hatch in the River Girnock.



ble 4. In contrast with our earlier example, a number of pair-
wise correlations can be discerned in the results of this refit-
ting exercise (the most important of these are illustrated in
Fig. 7).

Since the data sets in this group are clearly noisier than
the salmonid data and contain much less in the way of fine-
scale detail that the model might fit, we might expect to to
see that the parameters of these fits are less well defined
than those for the salmonids. However, with the exception of
the asymptotic length (L∞), all the parameters are little more
uncertain than their salmonid equivalents.

Within the obvious limitations of uncertainties and corre-
lations, we can see some quite well-defined geographical
patterns. The mean and variability of the length at first ob-
servation for Viking and the German Bight are almost indis-
tinguishable, with the mean for fish first observed on Jutland
Bank being clearly lower. This is consistent with the µ val-
ues whose confidence intervals largely overlap for Viking
and the German Bight, but are almost certainly lower for
fish caught on Jutland Bank. This pattern is even clearer
when we take account of the correlations in Figs. 7g–7i,
where we see that the values on the µ–p plane are clearly
overlapping for Viking and the German Bight, but fall into a
distinct region much nearer the origin for the Jutland Bank.
This tells us that the product µp and hence the expected re-
laxation rate (cf. eq. 16) is substantially lower on the Jutland
Bank than in the other two locations.

Discussion

The modelling framework
In this paper, we describe a discrete-time framework for

modelling the size-distribution dynamics of a population of
organisms exhibiting irreversible von Bertalanffy growth.
This formalism is closely related to the continuous-time
framework proposed by Gurney and Veitch (2007) but dif-
fers from it in two key regards: first, it is an exact represen-
tation of a growth process whose rate must be guaranteed
non-negative; and second, it implies a highly efficient nu-
merical scheme, thus making it more suited to data fitting.

The von Bertalanffy (1938) model is a deterministic
growth model, widely used in both assessment and manage-
ment of aquatic and terrestrial populations, which can be
derived from a rigorous picture of the assimilation and allo-

cation of energy. Our stochastic extension preserves this
mechanistic perspective. It assumes that all individuals ex-
hibit the same size-dependent functional response and show
randomly varying growth rates in response to stochastic
variations in food availability. The key to the simplicity of
our approach is the modelling approximation that an individ-
ual’s growth rate can be regarded as constant over a period τ
(which we call the growth correlation time) and that the av-
erage food availability over this period will either be high
enough to imply ingestion (and hence growth) at the physio-
logical maximum rate or low enough to imply zero growth.
We assume that these two eventualities occur with probabil-
ity p and 1 – p, respectively.

The basic formalism (eq. 10) is readily applicable to mod-
elling the long-term dynamics of a size-structured popula-
tion, but in this paper we concentrate on applications that
describe the changes in size distribution that accompany the
growth of a single cohort. The proximate aim of this work is
a framework within which we can understand age-structured
size-distribution observations.

Although the principal aim of the formalism is accurate
representation of non-negative growth combined with com-
putational efficiency, we have made some progress with ana-
lytic and semianalytic treatments. In the special case where
the per-capita mortality rate does not depend specifically on
size, we derive update rules for the first two moments of the
length-at-age distribution, which provide an exceptionally
efficient route to numerical evaluation of predicted trajecto-
ries. We note that the trajectories predicted by these rules
depend only on the first two moments of the initial length-
at-age distribution and are entirely independent of its spe-
cific form. We also note that in this approximation, the
predictions are entirely independent of the magnitude of the
mortality and of its dependence on age or time.

In the same special case, we show that an attracting trajec-
tory of length-at-age CV, of the type described by Gurney
and Veitch (2007), exists in the model described here, and
we obtain a closed form approximation to it. This approxi-
mation is too crude to be useful in error minimization, but it
gives a very clear idea of how the model’s dynamics depend
on its parameters — a very important consideration in the
early stages of an investigation, where the question at issue
is often the ability of the model to produce trajectories that
exhibit the same qualitative properties as those shown by the
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Frome Girnock

Parameter Symbol (units) Trout Trout Salmon

Initial mean length �Li (mm) 64.1–68.2 47.7–54.1 68.3–72.3
Initial length CV ci (%) 1.52–5.38 8.49–15.1 6.10–10.1
Asymptotic length L∞ (mm) 299–322 186–345 143–159
Maintenance rate µ (%·day–1) 0.391–0.498 0.110–0.451 0.530–0.981
Growth probability (summer) pg 0.619–0.800 0.702–1.00 0.561–0.864

Growth probability (winter) pw 0.126–0.167 0.014–0.218 0.017–0.066
Growing season start U (day of year) 58.0–83.2 30.1–103 71.1–99.6
Growing season end D (day of year) 146–156 153–234 167–193

Note: Trout refers to brown trout (Salmo trutta); salmon refers to Atlantic salmon (Salmo salar).

Table 2. 95% confidence limits for salmonid parameters fitted with size-independent mortality
and τ = 10 days, obtained from 500 bootstrap resamples of the original observations.



data. We find that where the product of the growth correla-
tion time (τ) and the length-specific maintenance rate (µ) is
small, the quasi-stationary length CV is proportional to the
product of ( )1 − p µτ and the difference between the current
and asymptotic mean lengths. This implies that the length-
at-age CV of a cohort goes to 0 as the mean length of its
surviving members approaches L∞, with the rate of approach
being dependent on (1 – p)µτ. This in turn suggests that a fit
to both the mean and CV of length-at-age will be more sen-

sitive to L∞ than a fit to the mean alone and will thus give a
reasonable estimate of the parameters even where (as for
salmon parr) no major proportion of the cohort reaches a
length close to the asymptotic value.

We illustrate the utility of this framework by using it to fit
two contrasting data sets describing the size-at-age of com-
mercially interesting fish populations. In one of these cases,
we have to make a minor structural extension to the sub-
model of growth rate variability before obtaining a satisfac-
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Fig. 5. Observed length-at-age statistics for Atlantic cod (Gadus morhua) in the North Sea during the 1990s: (a and b) German Bight,
(c and d) Jutland Bank, (e and f) Viking. Panels a, c, and e show mean length-at-age (points determined from data pooled in quarter-
year windows) together with 95% confidence limits (dotted lines determined from 1000 bootstrap resamples). Panels b, d, and f show
the coefficient of variation (CV) for length-at-age (points) and 95% confidence limits (dotted lines).



tory fit. The ease with which this can be achieved illustrates
the extensibility of the approach and hence the width of its
potential applicability.

It is important to stress that these two exemplary applica-
tions are intended as demonstrations, rather than as exhaus-
tive investigations. We thus fit a specific model and
demonstrate that it can produce a respectable fit to the data
rather than make a comparative investigation of a family of
candidate models.

In a similar vein, we neglect size-specific mortality, de-
spite frequent demonstrations in the literature (see Gud-
mundsson 2005 and references therein) of the importance of
size- (or age-) dependent mortality in determining observed
population size distributions. We investigate the likely sensi-
tivity of the fitting process to this omission below.

Exemplary application — salmonids in two UK rivers
Our first example concerned relatively well-defined co-

horts of juvenile salmonids growing in one Scottish and one
English river. Because the riverine environment shows a very
marked yearly cycle and our data has sufficient temporal res-
olution to resolve the resulting growth patterns, we needed
to recognise that the growth probability p varies within a
year. With the aid of a very simple picture, which assumed
that p takes the same two distinct values within fixed periods
(broadly growing and nongrowing seasons) of all years, we
obtained very satisfactory fits to subsets of the data covering
two species (salmon and trout) and two locations (in upland
Scotland and lowland England).

Although the mortality of salmon parr is generally only
weakly dependent on size (or age), this species undergoes
obligate emigration to sea before completing its life cycle.
This process is highly size-dependent — being virtually un-
known for parr <70 mm long and almost certain for parr
>20 mm long. A realistic model of this process is well be-
yond the scope of this paper, but we can crudely simulate its
effects on the size distribution of the river population by in-
troducing an additional mortality rate (ρc), which applies to
individuals whose length exceeds some threshold (Lc).

We show (Fig. 8) the results of three runs using parame-
ters appropriate to the salmon population in the Girnock,
with the threshold length Lc = 90 mm, a background mortal-
ity rate set to ρb = 0.0022 day–1 (equivalent to a year-to-year
survival of 0.5), and the additional mortality rate ρc set to 0,
0.008, and 0.02 day–1, respectively We see that although
additional mortality of 0.008 day–1 (equivalent to a yearly
survival of 0.05 and thus to removing the emigrating indi-
viduals over a period of months) produces a major effect on
the survival to age curve and will hence have an important
effect on the stable size distribution of a population with

continuous recruitment, it produces only very small effect on
the mean length-at-age and CV-at-age curves. By contrast,
an additional mortality of ρc = 0.02 day–1 (equivalent to a
year-to-year survival of 0.0007 and thus to removing all em-
igrating individuals over a period of days) alters the pre-
dicted length-at-age and CV-at-age curves by an amount that
is comparable with the confidence limits shown in Fig. 3.

We thus argue that while quite small size dependence of
mortality or emigration can produce very major changes in a
population’s stable size distribution, substantial change in
the length-at-age statistics requires a much more severe size
dependence of mortality. This is essentially because size de-
pendence of mortality will only produce important changes
in the length-at-age statistics of a cohort if the mortality rate
varies considerably across the cohort’s size distribution at
any given age. This suggests that the conclusions drawn
from the fitting exercise described here are likely to be rela-
tively robust against a change to the simplifying assumption
that mortality is size-independent.

Exemplary application — Atlantic cod in European
shelf waters

Our second example involved more complex and difficult
data, concerning Atlantic cod on the European shelf. The
survey program that provided the data was primarily de-
signed to measure spatial variations in size distribution and
secondarily to define the age distribution (modulo 1 year) of
individuals of a given size. The implication of this survey
design is that the animals whose ages we know do not form
a random sample from the population, so their size-at-age
distribution is not representative of that of the population at
large. By pooling data over wide spatial and temporal ranges
and accepting low age resolution (0.25 years), we obtained a
defensible picture of mean and CV of length-at-age in three
contrasting locations (the German Bight, the Jutland Bank,
and sea-area Viking).

In view of the generally noisier character of this data, as
well as its lower temporal resolution, we fit it using our ba-
sic model with constant coefficients. Although the resulting
fits clearly capture almost all of the features of the data that
such a model might be expected to reproduce, we note that
several data show evidence of poor fidelity at the highest
ages, accompanied by values for the asymptotic length,
which, while not entirely implausible, are still somewhat
high. The technical reason for this is that the model does not
permit the further reduction of L∞, which would improve the
fit to the mean at high ages without disproportionate reduc-
tions in CV in the same age range. One possible cause for
strong saturation in mean without a commensurate reduction
in CV would be that the population is not composed of a
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Parameter Symbol (units) German Bight Jutland Bank Viking

Initial mean length �Li (mm) 163 142 162
Initial length CV ci (%) 28.5 28.9 23.3
Asymptotic length L∞ (mm) 1750 2740 1660
Maintenance rate µ (%·day–1) 0.176 0.0965 0.142
Growth probability p 0.23 0.195 0.254

Table 3. Best-fit values for Atlantic cod (Gadus morhua) parameters fit with size-
independent mortality and growth correlation time (τ) set to 10 days.



single group of statistically similar individuals, but instead is
composed of a collection of groups of individuals (families,
sensu Gurney and Veitch 2007), each with distinct statistical
properties. However, the data analysed here is too imprecise
to distinguish this causal mechanism from other equally
plausible candidates.

Data fitting
In both exemplary applications, we adopted the statisti-

cally controversial approach of fitting to derived quantities
(mean and CV of length-at-age) rather than to raw data.
Despite the undoubted statistical risks involved in such a
course, we believe it to have worthwhile benefits. In our ex-
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Fig. 6. Fitted length-at-age statistics for Atlantic cod (Gadus morhua) in the North Sea in the 1990s. Panels a, c, and d show fitted
values (solid lines) and 95% confidence limits for observed values (dotted lines) of mean length-at-age. Panels b, d, and f show fitted
values (solid lines) and 95% confidence limits for observed values (dotted lines) of coefficient of variation (CV) for length-at-age.
Panels a and b refer to observations in the German Bight, c and d refer observations on the Jutland Bank, and e and f refer observa-
tions in Viking.



perience, the key stage in most model estimation processes
is not the formal parameter estimation, but rather the elimi-
nation of a series of structurally inappropriate early candi-
date models. If this can be done without the labour of formal
statsitical testing, considerable time and effort can be saved.
Much of the power of the approach advocated in this paper
comes from the fact that we have built up a major body of
analysis linking the gross properties of the predicted mo-

ment trajectories to model parameters and structure. Since
these insights tell us about the qualitative properties of mo-
ment trajectories, it is natural to compare the best estimates
we can make of such trajectories against those actually esti-
mated from observations to discern whether the model is
capable of producing trajectories of the required type. Once
we have a candidate model that passes this test, we may use-
fully consider the deployment of a more comprehensive
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Parameter Symbol (units) German Bight Jutland Bank Viking

Initial mean length �Li (mm) 160–166 140–144 158–164
Initial length CV ci (%) 27.2–29.2 28.4–29.5 22.1–24.2
Asymptotic length L∞ (mm) 1540–1880 2140–3320 1500–1840
Maintenance rate µ (%·day–1) 0.150–0.218 0.0760–0.140 0.119–0.180
Growth probability p 0.214–0.258 0.174–0.204 0.0.223–0.276

Table 4. 95% confidence limits for Atlantic cod (Gadus morhua) parameters fit with size-
independent mortality and τ = 10 days, obtained by fitting 500 bootstrap resamples of the
original data.

Fig. 7. Parameter correlations for fits to the resampled Atlantic cod (Gadus morhua) data: panels a, d, and g refer to the German Bight;
panels b, e, and h refer to the Jutland Bank; and panels c, f, and i refer to Viking. Panels a–c show µ vs. L∞; d–f show p vs. L∞; g–i
show p vs. µ .



statistical armoury, including all the standard maximum like-
lihood and Markov chain Monte Carlo methods, in addition
to the nonlinear minimization used in this paper.

On a less philosophical note, our analysis of the model
variant with size-independent mortality has shown that al-
though fitting to time series of simple summary statistics for
cohort size-at-age (that is to values of mean length-at-age
and length-at-age CV) enables us to determine the mainte-
nance rate (µ) and the realised proportion of potential
growth (the growth probability p), we cannot determine the
growth correlation time (τ) without additional evidence. In
the absence of such evidence, a workable strategy is to
choose a convenient but arbitrary value for τ that yields a fit
to the available data with biologically plausible values for µ
and p. Although we have only formally established this re-
sult for the case of size-independent mortality, our numerical
experiments lead us to the belief that it applies equally to the
more general case.

Model extensions
Although the exposition in this paper has concentrated on

simulations of data characterizing a single cohort, the basic
formalism (eq. 10) is equally suited to the description of a
reproducing population. In this context, it provides a concep-

tually appealing and computationally convenient route to in-
corporating environmentally driven, individual-to-individual
growth rate variability into population models without the
need to resort to computationally expensive, individual-
based methods.

Model extensions to improve biological realism are also
possible. Perhaps the most important extension to the work
described in our exemplary applications lies in the incorpo-
ration of strongly size-dependent mortality, such as that
produced by size selectivity of the gears used in typical
commercial fisheries. Our numerical experiments show that
the effects of strongly size-dependent mortality can be sur-
prisingly subtle, so prudent investigators will incorporate
such effects only if they have very good observational evi-
dence or if there are strongly marked patterns in the length-
at-age statistics, which require size-slective mortality for
their explanation.

Although size-slective mortality can be included in the
model without modification of eq. 10, other elements of bio-
logical realism require extensions to the formalism. For ex-
ample, observed mean length-at-age curves for fish are often
sigmoidal. Although we have treated the growth probability
p as being independent of length throughout this paper, there
is no technical difficulty in the context of the full model
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Fig. 8. Effects of size-dependent mortality are illustrated with three runs of a model describing the growth of Atlantic salmon (Salmo
salar) parr in the River Girnock. The runs are defined by eqs. 10 and 22, with through-stage survival Sq equivalent to a mortality rate
ρb = 0.0022 day–1 for L < Lc = 90 mm and ρb + ρc for L ≥ Lc, where ρc = 0 day–1 (solid line), 0.008 day–1 (dotted line), and 0.02 day–1

(dashed line). (a) Mean length-at-age, (b) length CV-at-age, (c) numbers-at-age, and (d) mortality rate at size.



(used in producing Fig. 8) in making p an increasing func-
tion of length and hence producing a sigmoidal growth
curve.

A further potentially important element of biological real-
ism lies in incorporating the cost of reproduction into our
discourse. Kooijman (1993) argues that expenditure on re-
production forms a constant tax on assimilation, which is
paid throughout life — acting first to build gonads and later
to operate them. In this picture, we simply incorporate the
tax rate into eq. 4, thus reducing L∞ by an appropriate factor,
but leaving the basic shape of the growth curves unchanged.

If the reproduction tax rate varies through life — for
example, being zero for immature animals and finite for
matures — then matures and immatures would have differ-
ent values of L∞ and hence different development indices. In
such a case, the natural model extension would be to repre-
sent immatures by one development index array and matures
by a second, with transitions between them determined by
an appropriate maturation rule. Such an extension would
produce characteristic “hockey-stick” deformations in the
growth curves, and the occurance of such an otherwise inex-
plicable feature in data would be the cue for the investiga-
tion of such a model extension.
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