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Abstract

This paper discusses the challenges faced by the empirical macroeconomist and meth-

ods for surmounting them. These challenges arise due to the fact that macroeconometric

models potentially include a large number of variables and allow for time variation in pa-

rameters. These considerations lead to models which have a large number of parameters

to estimate relative to the number of observations. A wide range of approaches are sur-

veyed which aim to overcome the resulting problems. We stress the related themes of prior

shrinkage, model averaging and model selection. Subsequently, we consider a particular

modelling approach in detail. This involves the use of dynamic model selection methods

with large TVP-VARs. A forecasting exercise involving a large US macroeconomic data set

illustrates the practicality and empirical success of our approach.
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1 Introduction

Macroeconomists build econometric models for several reasons. They may be interested in es-

timating a theoretical model such as a dynamic stochastic general equilibrium (DSGE) model.

Or they may wish to calculate impulse responses or variance decompositions. Or they may

wish to forecast. All such activities require the development of a statistical model for some

time series variables. A wide range of models, with well developed econometric methods, ex-

ist for such purposes. Since the pioneering work of Sims (1980), one of the most popular is

the vector autoregressive (VAR) model. However, in recent years a number of challenges have

arisen for the researcher working with VARs or similar models. This paper discusses these

challenges and methods which can be used to overcome then.

The challenges arise since the macroeconomist often has to estimate many parameters

with a relatively small amount of data. This can occur for several reasons. For instance, the

macroeconomist wishing to incorporate all the information in the hundreds of macroeconomic

variables collected by government statistical agencies may end up with a model a large number

of parameters. The presence of structural breaks or other forms of parameter change increases

the number of parameters that must be estimated. And, in many countries, the available time

span of the data can be quite short.

These issues have been influential in inspiring a resurgence of Bayesian methods in empir-

ical macroeconomics. If data information is weak relative to the number of parameters being

estimated, prior information can be very useful in obtaining sensible results. This prior in-

formation can be of many sorts. In the case of DSGE models which involve parameters with

a structural interpretation, the researcher often has strong prior information about them. Or

prior information about such structural parameters can be based on previous estimates ob-

tained using microeconomic data (see, e.g., Del Negro and Schorfheide, 2008). In the case of

VARs or extensions of them, it is common to choose priors based on a training sample of data

set aside to calibrate the prior (see, e.g., Primiceri, 2005). For VARs, the Minnesota prior is an-

other popular conventional choice (see, e.g., Doan, Litterman and Sims, 1984). There has also

been recent interest in giving Minnesota prior hyperparameters a hierarchical treatment which

2



allows them to be estimated from the data (see, e.g., Giannone, Lenza and Primiceri, 2012).

Model averaging or model selection methods can also be useful. That is, instead of working

with one parameter rich model, the researcher may wish to average over several parsimonious

models or select a single parsimonious model. When faced with the large model spaces that of-

ten result (i.e. when the researcher has many models under consideration), Bayesian methods

have also been found attractive.

However, the use of large parameter or model spaces can lead to computational problems.

That is, Bayesians typically estimate their models using computationally-intensive posterior

simulation methods (e.g. Markov chain Monte Carlo, MCMC, methods are very popular).

Even with a single small model, computational costs can be non-trivial. With larger models or

large model spaces, the computational burden of a Bayesian analysis can become prohibitive.

These considerations motivate the present paper. We begin by explaining the challenges

faced by the empirical macroeconomist and briefly outline some conventional treatments. We

then argue that dynamic model averaging (DMA) or dynamic model selection (DMS) methods

may be an attractive way of surmounting these challenges. DMS is dynamic in the sense that

it allows for a different model to be selected at each point in time. DMA does model averaging

with weights which can vary over time. We discuss how doing DMA or DMS using a fully

specified Bayesian model is computationally prohibitive. However, we show how approximate

methods, using so-called forgetting factors, developed in Raftery, Karny and Ettler (2010) can

be used to implement DMA and DMS even in very large models and/or with large model

spaces. We illustrate the success of these methods using a forecasting example adapted from

Koop and Korobilis (2012).

2 Statistical Challenges in Modern Macroeconomics

2.1 Overview

The macroeconomist will often be interested in building econometric models for variables

which we denote by yt. There are many types of models that the macroeconomist might want

to build (e.g. DSGE models), but we can illustrate the general nature of the challenges facing
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the macroeconomist in terms of a regression:

yt = x′tβ + εt, (1)

where εt are independent N
(
0, σ2

)
random variables. Much recent literature (including the

present paper) has focussed on three main challenges which arise in many macroeconomic

applications. These are:

1. xt might contain a large number of explanatory variables (most of which are probably

unimportant).

2. yt might contain a large number of dependent variables.

3. β might not be constant over time.

In this section we will discuss why we call these “challenges” and offer a brief overview of

existing treatments of them. But the general point is that all of these may lead to models which

have a large number of parameters relative to the number of observations. This can lead to

over-parameterization and over-fitting problems. The econometrician fitting an econometric

model is faced with a situation where, with so many dimensions to fit, somewhere the noise

in the data will be fit rather than the true pattern which exists. A common consequence of

this is that the econometrician can find apparently good in-sample fit, but poor forecasting

performance out of sample. Some of the patterns apparently found can be spurious and,

when these patterns are used out of sample, can lead to poor forecasts. A second problem

caused by large numbers of parameters relative to sample size is imprecise estimates. These

considerations lead to a search for more parsimonious models. They also lead to a desire for

more information to combine with weak data information to lead to more precise estimates.

This information can be in the form of a Bayesian prior or classical shrinkage of coefficients.

Furthermore, the combination of these three challenges leads to a fourth challenge: com-

putation. Apart from a few simple special cases (e.g. the homoskedastic VAR with natural

conjugate or Minnesota prior) analytical formulae for posteriors and predictives are not avail-
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able for the models macroeconomists work with and simulation methods are required. We will

discuss this computational challenge at the end of this section.

2.2 The Challenge Posed by Many Explanatory Variables

To illustrate the problems posed by many explanatory variables, we begin with the conven-

tional regression case (where yt is a scalar) and let k be the number of potential explanatory

variables. As an example, consider the cross-country growth regression literature (see, among

many others, Sala-i-Martin et al, 2004 or Fernandez, Ley and Steel, 2001). The dependent

variable is real GDP growth per capita and there are dozens of potential explanatory variables.

Most of these explanatory variables are likely to be unimportant but the researcher does not

know, a priori, which ones are important and which ones are not. For instance, Fernandez,

Ley and Steel (2001) has 41 explanatory variables. With only a moderately large sample size

of 140 countries, conventional econometric methods are unsatisfactory. That is, one might be

tempted to use hypothesis testing and delete unimportant variables. However, such a strat-

egy would involve so many hypothesis tests that problems associated with pre-testing would

be enormous. With k potential explanatory variables, there are up to 2k possible restricted

regressions which use as explanatory variables a subset of the variables in xt.

Most of the cross-country growth regression literature uses cross-sectional data sets, but

in applications involving time series data it is also possible that an explanatory variable is

important at some points in time, but not others. We will consider parameter change in a

subsequent sub-section, but note here that in such a context it is often not possible to test

whether an explanatory variable should simply be excluded or included, since the preferred

model may include it at some points in time but not others.

This has led to a growing literature which avoids the use of hypothesis testing procedures

and adopts other, closely related, econometric methods. These can be labelled: i) model aver-

aging, ii) model selection and iii) prior shrinkage.

Model averaging involves working with all 2k models and presenting results (e.g. fore-

casts) which are averaged across them. For the Bayesian, the weights used in this average
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are the marginal likelihoods, although classical model averaging methods can also be done

using weights proportional to an information criterion (see, e.g., Sala-i-Martin et al, 2004).

What often happens with such methods is that empirical results end up being dominated by

several parsimonious models. For instance, forecasts will be based on several models with a

small number of explanatory variables, with very little weight attached to forecasts from large

models with many explanatory variables.

Model selection methods involve selecting a single preferred model out of the 2k models

using some criteria (e.g. the marginal likelihood). Note that the term model selection, when

used in this context, is also sometimes called variable selection. Intermediate cases are also

possible where the researcher initially selects a small number of models (in the spirit of model

selection methods), but then does model averaging over this set.

Prior shrinkage can be done in many ways. The general idea is that, by combining prior

information with weak data information, more precise inferences can be obtained and over-

fitting can be minimized. In the case where the researcher has many potential explanatory

variables, most of which are probably unimportant (i.e. have coefficients near zero) it is

common to use a prior with mean zero and thus, shrink coefficients towards zero. De Mol,

Giannone and Reichlin (2008) is a prominent recent paper in this literature.

The close relation between model averaging, model shrinkage and prior shrinkage can be

seen by using a mixtures of normal prior for the elements of β = (β1, .., βk)
′:

βi|τ2i ∼ N
(
0, στ2i

)
.

A conventional prior would simply assume a particular value for τ2i with small values implying

a tight prior with a great deal of shrinkage towards the prior mean of zero. Large values imply

a relatively noninformative prior with little shrinkage. However, a wide range of different

shrinkage, selection or averaging methods arise if τ2i is given different treatments using a

hierarchical prior. For instance, as shown in Park and Casella (2008) an exponential mixing

density:

τ2i |λ ∼ Exp
(
σ2λ2

2

)
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leads to the Bayesian Lasso which is equivalent to prior shrinkage using a Laplace prior as in De

Mol, Giannone and Reichlin (2008). Lasso stands for “least absolute shrinkage and selection

operator” which, as its name suggests, can also be used for model selection.

Other alternatives (see, e.g., Chipman, George and McCulloch, 2001 for a classic survey or

Frühwirth-Schnatter and Wagner, 2010, for a recent time series implementation) would add

a layer to the prior hierarchy and let τ2i ⊆ {vs, vl} with Pr
(
τ2i = vs

)
= qi and Pr

(
τ2i = vl

)
=

1 − qi. The prior variances, vs and vl are set to “small” and “large” values. Exact details of

implementation vary and some researchers set vs = 0. The idea is that each coefficient is

either shrunk towards zero (with probability qi) or estimated in a data based fashion (with

probability 1 − qi). Note that, again, this can be interpreted as a prior providing shrinkage,

a model selection advice (i.e. if variables are excluded when qi is estimated to be sufficiently

small) or a model averaging device (i.e. if the researcher presents results from an MCMC

algorithm which averages over models with τ2i = vs and τ2i = vl with probability qi and 1− qi,

respectively).

The preceding discussion is only a brief illustration of the general ideas that are being used

in a burgeoning field which includes many extensions and alternatives to the basic methods

described here. The point worth noting here is that such methods are increasingly used with

VARs. To formalize our discussion of VARs, we begin with definitions and notation.

Each equation of a VAR can be written as a regression:

ymt = x′mtβ̃m + εmt,

with t = 1, .., T observations for m = 1, ..,M variables. ymt is the tth observation on the

mth variable, xmt is a km-vector containing the tth observation of the vector of explanatory

variables relevant for the mth variable and β̃m is the accompanying km-vector of regression

coefficients. The conventional VAR involves setting xmt =
(
1, y′t−1, .., y

′
t−p
)′ for m = 1, ..,M .

However, by allowing for xmt to vary across equations we are allowing for the possibility of a

restricted VAR (i.e. it allows for some of the coefficients on the lagged dependent variables to

be restricted to zero).
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If we stack all equations into vectors/matrices as yt = (y1t, .., yMt)
′, εt = (ε1t, .., εMt)

′,

β =


β̃1
...

β̃M

 ,

xt =



x′1t 0 · · · 0

0 x′2t
. . .

...
...

. . . . . . 0

0 · · · 0 x′Mt


,

we can write the VAR in the regression form given in (1) except that now yt is a vector and εt

is i.i.d. N (0,Σ).

Note that, in the VAR, we are likely to have many explanatory variables in each equation.

That is, each equation will have p lags of each of M dependent variables (plus, possibly, an

intercept, other deterministic terms and exogenous variables). If M and/or p is at all large, the

problem of having many explanatory variables (most of which are probably unimportant) that

we saw with cross-country growth regressions will also arise here. Thus, the need for prior

shrinkage, variable selection and/or model averaging becomes important. There is a large

literature on prior shrinkage in VARs, beginning with the Minnesota prior (see, e.g., Doan,

Litterman and Sims, 1984) which is still popularly used in recent papers such as Banbura,

Giannone and Reichlin (2010), Carriero, Clark and Marcellino (2011) and Giannone, Lenza

and Primiceri (2012), among many others. Moving slightly beyond the Minnesota prior, there

are many other conventional priors used for VARs and Kadiyala and Karlsson (1997) offers a

discussion of many of these.

However, just as with regressions, there is a growing literature which does model averaging

or variable selection or uses hierarchical priors with VARs. Andersson and Karlsson (2009) and

Ding and Karlsson (2012) are two recent examples in the model averaging and model selec-

tion vein of the literature. An important pioneering paper in the use of hierarchical methods

involving mixture of normals priors is George, Sun and Ni (2008). Subsequently, there have
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been a wide range of VAR papers adopting approaches which are similar in spirit, but differ in

details. Recent examples include Gefang (2012), Koop (2012) and Korobilis (2012, 2013), but

many others exist. What papers like these have in common is that they use hierarchical priors

to obtain more parsimonious VARs and can be used for prior shrinkage, variable selection or

model averaging. Details are not provided here, but the interested reader is referred to the

monograph by Koop and Korobilis (2009) for a survey of some of these methods.

2.3 The Challenge Posed by Many Dependent Variables

Conventionally, researchers have used VARs with only a few (e.g. usually two or three but

at most ten) dependent variables. However, there has recently been an increasing interest in

large VARs where the number of dependent variables is much larger than this. An early paper

was Banbura, Giannone and Reichlin (2010) which considered VARs of over a hundred depen-

dent variables. This interest in large VARs was motivated by the fact that macroeconomic data

bases typically contain hundreds of variables. Since more variables can potentially provide the

researcher with more information, it might pay to use them. After all, more information is

better than less. Historically, researchers with such large data sets have used factor methods

which attempt to extract the information in large numbers of variables into a much smaller

number of factors (see, e.g., Forni, Hallin. Lippi and Reichlin, 2000, and Stock and Watson,

2002a,b). However, in a forecasting comparison exercise using a large set of US macroeco-

nomic variables, Banbura et al (2009) found large VARs to forecast better than factor methods.

This has led to a growing literature using large VARs in a wide variety of empirical work (see,

among others, Giannone, Lenza, Momferatou and Onorante, 2010, Carriero, Kapetanios and

Marcellino, 2009, Carriero, Clark and Marcellino, 2011, Koop, 2011, and Gefang, 2012).

In a sense, the challenges posed by large VARs are the same as those imposed by having

a large number of explanatory variables. That is, the number of parameters relative to the

number of explanatory variables can be very large with these models. Thus, some combination

of prior shrinkage, variable selection or model averaging is required to obtain sensible results.

For instance, Banbura et al (2010) worked with monthly data and included 12 lags in their
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large VAR. This lead to tens of thousands of coefficients and their data set only began in 1959.

Even equation-by-equation OLS estimation of the resulting VAR is impossible since the number

of explanatory variables in each equation is more than the number of observations.

In this literature, various approaches have been used. But they all fall into the same cat-

egories as described in the preceding sub-section. Some authors (e.g. Banbura et al, 2010)

use conventional Minnesota priors. Other authors (e.g. Koop, 2011 or Gefang, 2012) use hi-

erarchical priors which can be interpreted as variable selection or model averaging methods.

Others (e.g. Koop, 2012) use alternative model averaging approaches which involve averaging

over different smaller dimensional VARs.

2.4 The Challenge Posed by Parameter Change

Thus far, we have only discussed regressions and VARs with constant coefficients. However,

there is a large amount of evidence for parameter change in most macroeconomic variables

(see, among many others, Stock and Watson, 1998) suggesting that the assumption of constant

coefficients may be a poor one. Furthermore, there is a large amount of evidence that error

covariance matrices in VARs should not be constant (see, among many others, Sims and Zha,

2006).

There are a huge number of econometric models which allow for time variation in para-

meters (e.g. Markov switching, structural break models, threshold models, etc.). However,

time-varying parameter (TVP) models are becoming an increasingly popular choice (e.g. Cog-

ley and Sargent, 2001, 2005, Primiceri, 2005 and many others). The TVP-VAR extends the VAR

defined in above as:

yt = xtβt + εt, (2)

where

βt+1 = βt + ut (3)
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where ut is i.i.d. N (0, Q). Thus, the VAR coefficients are allowed to vary gradually over

time. Furthermore, previously we assumed εt to be i.i.d. N (0,Σ) and, thus, the model was

homoskedastic. In general, it may be desirable to assume εt to be i.i.d. N (0,Σt) so as to

allow for heteroskedasticity. There are many forms that Σt could take (e.g. various types of

multivariate GARCH or regime switching behavior are possible). However, many papers have

found the form of multivariate stochastic volatility used in Primiceri (2005) to be attractive.

For the sake of brevity, complete details are not provided here but the interested reader can

find them in the monograph, Koop and Korobilis (2009).

Allowing for parameter change greatly increases over-parameterization concerns. Estimat-

ing one high-dimensional vector β can be daunting enough, estimating t = 1, .., T vectors βt

is even more daunting. The equation modelling the evolution of βt, (3), can be interpreted

as a hierarchical prior for βt and this is a big help in reducing over-parameterization con-

cerns. Nevertheless, the TVP-VAR contains more parameters than the VAR (i.e. the VAR can

be interpreted as a restricted special case of the TVP-VAR with Q = 0). Any concerns about

over-parameterization in a VAR will become even greater in the comparable TVP-VAR.

Most of the existing TVP-VAR literature (e.g. Cogley and Sargent, 2001, 2005 and Primiceri,

2005) works with small dimensional models and use of three dependent variables is common.

With models of this dimension, over-parameterization concerns are less and the need for prior

shrinkage, variable selection or model averaging is less. Thus, the existing literature typically

works with a single model and no model selection or averaging is done. Fairly tight priors are

used, though, particularly on Q. Q controls the evolution of the VAR coefficients and, without

a tight prior specifying that Q is small, it is possible to over-fit and find too much change in the

VAR coefficients. In this case, βt can wander widely over time, including into counter-intuitive

and empirically damaging explosive regions of the parameter space.

In the subsequent sections, we will discuss new methods, based on Koop and Korobilis

(2012), for shrinkage, model selection and model averaging in larger TVP-VARs and illustrate

their success in an empirical example. However, before doing this, we discuss the computa-

tional challenge of VARs and TVP-VARs (and model averaging) as this motivates the need for

the approximate approach used with these new methods.
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2.5 The Computational Challenge

Even in the regression model with which we began this section, doing model averaging can be

computationally demanding. In the beginning of Section 2.2, we showed how model averag-

ing can involve working with 2k models. Even with the Normal linear regression model with

natural conjugate prior (for which analytical posterior and predictive results exist), exhaus-

tively evaluating each and every model can take days or weeks (or more) of computer time

unless k < 25 or so. This has led to the use of simulation algorithms (e.g. the Markov Chain

Monte Carlo Model Composition or MC3 algorithm of Madigan and York,1995). Methods for

doing model selection or averaging using hierarchical priors such as those discussed in Section

2.2 (e.g. George, Ni and Sun, 2008 or Bayesian Lasso methods of Park and Casella, 2008) also

require the use of MCMC methods.

With homoskedastic VARs, the use of a natural conjugate or a Minnesota prior leads to an

analytical posterior and predictive density and MCMC methods are not required. However, as

discussed in Kadiyala and Karlsson (1997), these priors can have some unattractive properties.

Freeing up these priors to avoid these properties requires the use of posterior simulation meth-

ods. Restricted VARs, which do not have exactly the same set of lagged dependent variables

in each equation, also require the use of MCMC methods. Freeing up the homoskedasticity as-

sumption to allow for errors which exhibit multivariate stochastic volatility or GARCH effects

also leads to MCMC methods. In sum, MCMC methods are required to do Bayesian inference

in VARs as soon as we move beyond the simplest setup in more empirically-realistic directions.

TVP-VARs are state space models and one of their advantages is that well-known statis-

tical methods for state space models (e.g. based on the Kalman filter) are available. But,

full Bayesian analysis still involves MCMC methods. Exact details of the MCMC methods re-

quired for many of these VARs and TVP-VARs is provided in Koop and Korobilis (2009) and

the website associated with this monograph provides computer code for implementation. With

small models, such MCMC methods work very well, but they often become very demanding in

high-dimensional models.

To provide a rough idea of approximate computer time, consider the three variable TVP-
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VAR of Primiceri (2005). Taking 10,000 MCMC draws (which may not be enough to ensure

convergence of the algorithm) takes approximately 1 hour on a good quality personal com-

puter. This is fine if the researcher wishes to estimate one small model. But doing a recursive

forecasting exercise may involve repeatedly doing MCMC methods on an expanding window of

data. If the researcher forecasts at 100 points in time, the computation burden then becomes

about 100 hours. Furthermore, this only involves one small model. The researcher doing

model averaging or selection may have many models and computation time will increase lin-

early with the number of models. Finally, these computation times are all for a small model.

Increasing the dimension of the model size vastly increases computation. Remember that the

standard TVP-VAR with M dependent variables defined in Section 2.2 implies βt will contain

M × (Mp+ 1) elements. Thus, the dimension of βt (and thus computation time) does not

increase linearly in M , but at a much faster rate.

In our experience, doing MCMC estimation and forecasting with TVP-VARs is computa-

tionally infeasible unless the researcher is working with a small number of low dimensional

models. With VARs which require use of MCMC methods, it is possible to work with somewhat

higher dimensional models (e.g. Koop, 2011, used the methods of George, Sun and Ni, 2008

in a VAR forecasting exercise using 20 variables), but the computational burden still seems

insurmountable with larger VARs.1 For this reason, when we develop our Bayesian methods

for forecasting using model averaging with TVP-VARs an approximate approach which does

not require the use of MCMC methods will be used.

3 Surmounting these Challenges in a Potentially Large TVP-VAR

3.1 Overview

In the preceding section, we described the challenges that must be overcome for the macro-

economist to build a sensible econometric model such as a TVP-VAR. Such a model will po-
1There are some potentially promising computational developments in particle filtering and sequential impor-

tance sampling (possibly involving massively parallel computation) which may allow for estimation of larger VARs
and TVP-VARs without use of MCMC methods in the future. But such methods are in their infancy. See, for instance,
Andrieu, Doucet and Holenstein (2010) and Durham and Geweke (2012).
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tentially contain many variables. However, we emphasize the word “potentially” here. We

are not necessarily saying that a large TVP-VAR will always be necessary. It is possible that a

smaller, more parsimonious model, is sufficient. Furthermore, it is possible that time variation

in parameters is not required and that a constant coefficient VAR is sufficient. However, we do

not want to simply impose such choices. We want an econometric methodology which chooses

automatically the dimension of the VAR and the degree of coefficient change. This is what we

discuss in this half of the paper. Based on Koop and Korobilis (2012), we describe an econo-

metric methodology for estimating potentially large TVP-VARs and automatically making many

of the necessary specification choices such as the dimensionality of the TVP-VAR.

To do this, we first describe an approximate method involving the use of a forgetting fac-

tor which allows for computationally simple inference in large TVP-VARs without the need for

MCMC methods. Next, we describe how over-parameterization can be avoided through the

use of DMA or DMS. In the preceding section we discussed model averaging and model selec-

tion methods. DMA and DMS share the same general motivation as these methods, but are

dynamic. That is, they allow for changes over time in how the model averaging or variable

selection is done. For instance, DMS allows for the possibility of switching between a small

and large TVP-VAR so that a more parsimonious representation is used much of the time, with

the large TVP-VAR only used occasionally when needed.

3.2 Easy Estimation of TVP-VARs using Forgetting Factors

In this sub-section we will describe the main ideas involved in estimating TVP-VARs using

forgetting factors. Complete details are available in Koop and Korobilis (2012).

The TVP-VAR is defined in (2) and (3) with εt being i.i.d. N (0,Σt) and ut being i.i.d.

N (0, Qt). The basic idea of our algorithm is that, if Σt and Qt were known, then computation

vastly simplified and MCMC methods would not be required. That is, the TVP-VAR is a state

space model and standard algorithms can be used for estimating the states (in our case βt for

t = 1, .., T ). A full Bayesian approach such as that used by Primiceri (2005) would involve the

use of MCMC methods for drawing Σt and Qt and, at each draw, state space algorithms could
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be used to provide draws of βt. Since many MCMC draws are necessary, this can be computa-

tionally very demanding. In the past, before the explosion of computer power after the 1980s,

it was common to use various approximations to avoid such a computational burden. We adapt

one of these methods (see Raftery, Karny and Ettler, 2010, for a discussion of the method used

in this paper or West and Harrison, 1997, for a general overview of such methods).

To describe the basics of forgetting factor methods, we first introduce notation where

ys = (y1, .., ys)
′ denotes observations through time s. The Kalman filter is a standard tool for

estimating state space models such as TVP-VAR. Kalman filtering involves an updating formula

βt−1|yt−1 ∼ N
(
βt−1|t−1, Vt−1|t−1

)
(4)

where formulae for βt−1|t−1 and Vt−1|t−1 are given in textbook sources (e.g. Durbin and Koop-

man, 2001).

Kalman filtering then proceeds using a prediction equation:

βt|yt−1 ∼ N
(
βt|t−1, Vt|t−1

)
(5)

where

Vt|t−1 = Vt−1|t−1 +Qt (6)

Kalman filtering requires the initialization of the Kalman filter, i.e. requires a prior density

for β0|y0 which involves choice of β0|0 and V0|0. Then it proceeds by sequentially using the

formulae for β1|y0, β1|y1, β2|y1, etc. from (5) and (4). The Kalman filter also provides a

predictive density p
(
yt|yt−1

)
which can be used for forecasting yt given data through time

t− 1.

Equation (6) is the only place where Qt appears in the Kalman filtering formulae. It can be

removed if we replace (6) by:

Vt|t−1 =
1

λ
Vt−1|t−1.

The scalar λ is called a forgetting factor with 0 < λ ≤ 1. The desirable properties of
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forgetting factor estimates are discussed in papers such as Raftery, Karny and Ettler (2010).

For instance, it can be shown that they imply that observations j periods in the past have

weight λj in the estimation of βt. λ can be set to a number slightly less than one. For quarterly

macroeconomic data, λ = 0.99 implies observations five years ago receive approximately 80%

as much weight as last period’s observation. This is a value suitable for fairly stable models

where coefficient change is gradual. The choice λ = 1 yields the constant coefficient VAR.

To estimate Σt we use a similar approach involving a decay factor, κ. In particular, we use

an Exponentially Weighted Moving Average (EWMA) estimator:

Σ̂t = κΣ̂t−1 + (1− κ) ε̂tε̂
′
t, (7)

where ε̂t = yt − βt|txt is produced by the Kalman filter.

Using these approximations for Σt and Qt along with Kalman filtering methods for infer-

ence on βt for t = 1, .., T results in fast and easy computation of even large TVP-VARs without

the need for MCMC methods.

As noted above, Kalman filtering requires a prior for the initial condition. In our empirical

work, we use a version of the Minnesota prior with

β0 ∼ N
(
β0|0, V0|0

)
.

This Minnesota prior shrinks coefficients towards a prior mean (in our case β0|0 is zero)

with the prior variance, V0|0, controlling the amount of shrinkage. If V i contains prior variances

for coefficients in equation i, then we make the Minnesota prior choices of

V i =


γ
r2

for coefficients on lag r for r = 1, .., p

a for the intercepts
.

We set a set to large number so as to be noninformative. We will return to the issue of the

selection of γ in the empirical section.
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3.3 Model Averaging and Model Switching in TVP-VARs

Through the use of forgetting factors we have surmounted the computational challenge as-

sociated with large TVP-VARs. But TVP-VARs can still be over-parameterized. The use of the

Minnesota prior on the initial condition is some help in overcoming this problem, but we go

further by using model averaging and selection methods. In this sub-section we describe how

these are implemented.

So far have discussed one single TVP-VAR. With many TVP regression models, Raftery et

al (2010) develop methods for doing DMA or DMS which involves the use of an additional

forgetting factor. The basic idea can be described quite simply. Suppose the researcher has

j = 1, .., J models. DMA or DMS involve calculating the probability that model j should be

used for forecasting at time t, given information through time t−1. We denote this probability

by πt|t−1,j .

Once we have calculated πt|t−1,j for j = 1, .., J , we can use these probabilities for fore-

casting yt given information available at time t− 1 as follows: DMS involves forecasting using

the single model with the highest value for πt|t−1,j . DMA involves forecasting using a weighed

average of forecasts from all J models where the weights are given by πt|t−1,j . We stress that

these weights are changing over time, so that DMS allows for model switching (i.e. using a

different model to forecast at different points in time) and DMA uses different weights for

model averaging at each point in time.

Raftery et al (2010) develop a fast recursive algorithm, similar to the Kalman filter, using

a forgetting factor approximation for obtaining πt|t−1,j . Their algorithm starts with an initial

condition π0|0,j (which we set so that, a priori, each model is equally likely). They then use a

forgetting factor α and model prediction equation:

πt|t−1,j =
παt−1|t−1,j∑J
l=1 π

α
t−1|t−1,l

(8)
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and a model updating equation:

πt|t,j =
πt|t−1,jpj

(
yt|yt−1

)∑J
l=1 πt|t−1,lpl (yt|yt−1)

(9)

to complete their filtering algorithm. Note that all that is required is pj
(
yt|yt−1

)
, which is the

predictive likelihood for model j (i.e. the predictive density for model j evaluated at yt). This

is produced by the Kalman filter run for model j. Thus, in its entirety, the DMA algorithm

of Raftery et al (2010) requires the researcher to run J Kalman filters as well as the filtering

algorithm given in (8) and (9). This is much faster than using MCMC methods and, thus, large

model spaces can be used.

The properties of this approach are discussed in Raftery et al (2010). Here we provide

some intuition for why this approach has attractive properties. The predictive likelihood is a

measure of forecast performance and the forgetting factor, α, has a similar interpretation as

the other forgetting factor, λ. With these facts, it can be seen that the approach implies that

models that have forecast well in the recent past have higher πt|t−1,j and, thus, are more likely

to be used to forecast now. That is, it is easy to show that:

πt|t−1,j =

t−1∏
i=1

[
pj
(
yt−i|yt−i−1

)]αi
Thus, model j will receive more weight at time t if it has forecast well in the recent past where

the interpretation of the “recent past” is controlled by the forgetting factor, α. With α = 0.99

forecast performance five years ago receives 80% as much weight as forecast performance last

period. With α = 1 it can be shown that πt|t−1,k is proportional to the marginal likelihood

using data through time t − 1. Thus, setting α = 1 produces conventional Bayesian model

averaging done in a recursive fashion.

Belmonte and Koop (2013) provide evidence that the approach of Raftery et al (2010)

yields results which are similar to those produced by doing DMA or DMS using a fully specified

Bayesian model estimated using MCMC methods for an empirical example involving only a

small number of models (MCMC methods are not possible with larger model spaces).
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DMA and DMS using the algorithm of Raftery et al (2010) can be done with any set of

models. Raftery et al (2010) use a set of TVP regression models. In the empirical application

in the next section, we use it for a different set of models. For the Bayesian, different priors

lead to different models. Motivated by this consideration, we use different models defined by

different degrees of prior shrinkage in the Minnesota prior. That is, we consider seven different

values for γ,
[
10−10, 10−5, 0.001, 0.005, 0.01, 0.05, 0.1

]
, leading to seven different degrees of

prior shrinkage of the initial VAR coefficients. In this way, the algorithm can choose the degree

of prior shrinkage that leads to the best forecast performance.

Our empirical application also includes TVP-VARs of different dimension in its model space.

In particular, we define small, medium and large TVP-VARs. The small TVP-VAR contains the

variables we want to forecast (GDP growth, inflation and interest rates). The medium contains

the variables in small model plus four others suggested by the DSGE literature. The large

contains the variables in the medium model plus 18 others often used to forecast inflation or

output growth. The Data Appendix provides a complete listing and breakdown of all variables

used in this paper. Thus, our model space is composed of a range of TVP-VARs of differerent

dimension and different degree of prior shrinkage.

The incorporation of TVP-VARs of different dimension raises one issue. Remember that the

predictive likelihood, pj
(
yt−i|yt−i−1

)
, plays the key role in DMS. Our small, medium and large

TVP-VARs will use different definitions of yt and thus are not comparable. Accordingly, we

use the predictive likelihood for the variables in the small TVP-VAR. These are common to all

models.

4 Empirical Illustration

This empirical illustration is adapted from the working paper version of Koop and Korobilis

(2012) and differs somewhat from the results in the final version of the paper due to some

differences in specification and details of implementation.
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4.1 Data

Our data set comprises 25 major quarterly US macroeconomic variables and runs from 1959:Q1

to 2010:Q2. Following, e.g., Stock and Watson (2008) and recommendations in Carriero, Clark

and Marcellino (2011) we transform all variables to stationarity, as described in the Data Ap-

pendix. We investigate the performance of our approach in forecasting inflation, GDP and the

interest rate which are the variables in our small TVP-VAR. The transformations are such that

the dependent variables are the percentage change in inflation (the second log difference of

CPI), GDP growth (the log difference of real GDP) and the change in the interest rate (the

difference of the Fed funds rate). We also standardize all variables by subtracting off a mean

and dividing by a standard deviation. We calculate this mean and standard deviation for each

variable using data from 1959Q1 through 1969Q4 (i.e. data before our forecast evaluation

period). For the sake of brevity, we focus on DMS instead of DMA.

4.2 Other Modelling Choices and Models for Comparison

We use a lag length of 4. This is consistent with quarterly data. Our approach, which we label

TVP-VAR-DMS, requires selection of forgetting and decay factors. In this paper, we simply

set them to standard values (e.g. as recommended by Raftery et al, 2010) of α = λ = 0.99

and κ = 0.96. Koop and Korobilis (2012) estimate the forgetting and decay factors and the

interested reader is referred that paper for details about methods for their estimation.

We compare the performance of TVP-VAR-DMS to many special cases. Unless otherwise

noted, these special cases are restricted versions of TVP-VAR-DMS and, thus (where relevant)

have exactly the same modelling choices, priors and select the prior shrinkage parameter in

the same way. They include:

• TVP-VARs of each dimension, with no DMS being done over TVP-VAR dimension.

• VARs of each dimension, obtained by setting λ = 1.

• Homoskedastic versions of each VAR.2

2When forecasting yt given information through t− 1, Σ is estimated as 1
t−1

t−1∑
i=1

ε̂iε̂
′
i.
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We also present random walk forecasts (labelled RW) and forecasts from a homoskedastic

small VAR estimated using OLS methods (labelled Small VAR OLS).

4.3 Estimation Results

In this empirical illustration, we focus on forecasting. But it is worthwhile briefly noting two

aspects relating to estimation. Figure 1 plots the value of γ, the shrinkage parameter in the

Minnesota prior, selected at each point in time for TVP-VARs of different dimension. Note that,

as expected, we are finding that the necessary degree of shrinkage increases as the dimension

of the TVP-VAR increases.

1980 1985 1990 1995 2000 2005 2010
0

0.01

0.05

0.1
Minnesota Shrinkage Coefficient ­ Small TVP­VAR

1980 1985 1990 1995 2000 2005 2010
0.0010.005

0.01

0.05

Minnesota Shrinkage Coefficient ­ Medium TVP­VAR

1980 1985 1990 1995 2000 2005 2010
0.001

0.005

0.01

Minnesota Shrinkage Coefficient ­ Large TVP­VAR

Figure 2 plots the time-varying probabilities associated with the TVP-VAR of each dimen-

sion. Note that, for each dimension of TVP-VAR, the optimum value for the Minnesota prior

21



shrinkage parameter, γ, is chosen and the probability plotted in Figure 2 is for this optimum

value. Remember that TVP-VAR-DMS will forecast with the TVP-VAR of dimension with highest

probability. It can be seen that this means TVP-VAR-DMS will involve a great deal of switching

between TVP-VARs of different dimension. In the relatively stable period from 1990 through

2007, the small TVP-VAR is being used to forecast. For most of the remaining time the large

TVP-VAR is selected, although there are some exceptions to this (e.g. the medium TVP-VAR

is selected for most of the 1967-1973 period). Thus, TVP-VAR-DMS is achieving parsimony,

at least at many points in time, by avoiding the large TVP-VAR and selecting one of a smaller

dimension.

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Time­varying probabilities of small/medium/large TVP­VARs

small VAR
medium VAR
large VAR

Figure 2

4.4 Forecast Comparison

We present iterated forecasts for horizons of up to two years (h = 1, .., 8) with a forecast

evaluation period of 1970Q1 through 2010Q2. The use of iterated forecasts does increase the

computational burden since predictive simulation is required (i.e. when h > 1 an analytical

formula for the predictive density does not exist). We do predictive simulation in two different
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ways. The first (simpler) way uses the VAR coefficients which hold at time T to forecast

variables at time T + h. This is labelled βT+h = βT in the tables below and assumes no VAR

coefficient change between T and T + h. The second way, labelled βT+h ∼ RW in the tables,

does allow for coefficient change out-of-sample and simulates from the random walk state

equation (3) to produce draws of βT+h. Both ways provide us with βT+h and we simulate

draws of yτ+h conditional on βT+h to approximate the predictive density.3

As measures of forecast performance, we use mean squared forecast errors (MSFEs) and

predictive likelihoods. It is natural to use the joint predictive density for our three variables

of interest (i.e. inflation, GDP and the interest rate) as an overall measure of forecast per-

formance. Thus, Tables 1 through 3 present MSFEs for each of our three variables of interest

separately. Table 4 presents sums of log predictive likelihoods using the joint predictive likeli-

hood for these three variables.

MSFEs are presented relative to the TVP-VAR-DMS approach which simulates βT+h from

the random walk state equation. Tables 1 through 3 are mostly filled with numbers greater

than one, indicating TVP-VAR-DMS is forecasting better than other forecasting approaches.

This is particularly true for inflation and GDP. For the interest rate, TVP-VAR-DMS forecasts best

at several forecast horizons but there are some forecast horizons (especially h = 7, 8) where

large TVP-VARs are forecasting best. Nevertheless, overall MSFEs indicate TVP-VAR-DMS is

the best forecasting approach among the approaches we consider. Note, too, that TVP-VAR-

DMS is forecasting much better than our most simple benchmarks: random walk forecasts and

forecasts from a small VAR estimated using OLS methods.

Next consider results for TVP-VARs of a fixed dimension. Overall, we are finding that

large TVP-VARs tend to forecast better than small or medium ones, although there are many

exceptions to this. For instance, large TVP-VARs tend to do well when forecasting interest rates

and inflation, but when forecasting GDP the small TVP-VAR tends to do better. Such findings

highlight that there may often be uncertainty about TVP-VAR dimensionality suggesting the

usefulness of TVP-VAR-DMS. In general, though, MSFEs indicate that heteroskedastic VARs
3For longer-term forecasting, this has the slight drawback that our approach is based on the model updating

equation which uses one-step ahead predictive likelihoods (which may not be ideal when forecasting h > 1 periods
ahead).
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tend to forecast about as well as TVP-VARs of the same dimension suggesting that, with this

data set, allowing for time-variation in VAR coefficients is less important than allowing for

DDS.

With regards to predictive simulation, MSFEs suggest that simulating βT+h from the ran-

dom walk state equation yields only modest forecast improvements over the simpler strategy

of assuming no change in VAR coefficients over the horizon that the forecast is being made.

Table 1: Relative Mean Squared Forecast Errors, GDP

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

FULL MODEL

TVP-VAR-DMS, λ = 0.99, βT+h = βT 1.00 1.02 1.02 1.03 1.02 1.00 1.01 0.99

TVP-VAR-DMS, λ = 0.99, βT+h ∼ RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SMALL VAR

TVP-VAR, λ = 0.99, βT+h = βT 1.04 0.95 1.08 1.00 1.04 1.08 1.01 1.02

TVP-VAR, λ = 0.99, βT+h ∼ RW 1.05 0.95 1.08 1.03 1.03 1.06 0.99 1.02

VAR, heteroskedastic 1.04 0.94 1.06 1.03 1.04 1.06 1.02 1.04

VAR, homoskedastic 1.09 1.01 1.04 1.01 1.06 1.08 1.02 1.04

MEDIUM VAR

TVP-VAR, λ = 0.99, βT+h = βT 1.09 0.99 1.04 1.04 1.06 1.05 1.02 1.07

TVP-VAR, λ = 0.99, βT+h ∼ RW 1.10 1.00 1.04 1.07 1.06 1.05 1.03 1.05

VAR, heteroskedastic 1.10 1.00 1.02 1.05 1.09 1.02 1.02 1.10

VAR, homoskedastic 1.08 1.02 1.04 1.08 1.09 1.03 1.00 1.08

LARGE VAR

TVP-VAR, λ = 0.99, βT+h = βT 1.03 1.04 1.02 1.06 1.07 1.07 1.06 1.10

TVP-VAR, λ = 0.99, βT+h ∼ RW 1.02 1.05 1.03 1.06 1.06 1.08 1.07 1.09

VAR, heteroskedastic 1.09 1.12 1.08 1.11 1.09 1.10 1.10 1.13

VAR, homoskedastic 1.02 1.05 1.04 1.04 1.03 1.03 1.03 1.05

BENCHMARK MODELS

RW 1.59 1.71 1.81 1.97 1.96 1.88 1.96 2.22

Small VAR OLS 1.19 1.13 1.53 1.29 1.31 1.36 1.27 1.29
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Table 2: Relative Mean Squared Forecast Errors, Inflation

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

FULL MODEL

TVP-VAR-DMS, λ = 0.99, βT+h = βT 1.02 0.99 1.00 1.00 1.00 1.01 0.99 1.00

TVP-VAR-DMS, λ = 0.99, βT+h ∼ RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SMALL VAR

TVP-VAR, λ = 0.99, βT+h = βT 1.04 1.05 1.07 1.06 1.06 1.06 1.00 1.04

TVP-VAR, λ = 0.99, βT+h ∼ RW 1.03 1.06 1.07 1.06 1.05 1.04 1.01 1.04

VAR, heteroskedastic 1.02 1.04 1.03 1.01 1.02 1.02 0.98 1.05

VAR, homoskedastic 1.05 1.08 1.05 1.02 1.02 1.03 0.98 1.06

MEDIUM VAR

TVP-VAR, λ = 0.99, βT+h = βT 1.08 1.06 1.07 1.01 1.00 1.04 0.99 1.05

TVP-VAR, λ = 0.99, βT+h ∼ RW 1.08 1.05 1.05 1.01 1.00 1.05 0.99 1.04

VAR, heteroskedastic 1.07 1.06 1.02 1.00 1.02 1.02 0.96 1.07

VAR, homoskedastic 1.11 1.10 1.11 1.03 1.03 1.04 0.96 1.09

LARGE VAR

TVP-VAR, λ = 0.99, βT+h = βT 1.01 1.02 1.02 0.95 0.99 1.04 0.97 1.04

TVP-VAR, λ = 0.99, βT+h ∼ RW 1.01 1.03 1.03 0.95 1.01 1.04 0.97 1.02

VAR, heteroskedastic 1.05 1.03 1.03 0.95 1.01 1.03 0.96 1.04

VAR, homoskedastic 1.05 1.05 1.04 0.96 1.01 1.05 0.97 1.07

BENCHMARK MODELS

RW 3.26 2.71 1.69 2.07 2.11 1.73 1.65 1.74

Small VAR OLS 1.09 1.23 1.12 1.14 1.16 1.05 1.02 1.18
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Table 3: Relative Mean Squared Forecast Errors, Interest Rates

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

FULL MODEL

TVP-VAR-DMS, λ = 0.99, βT+h = βT 1.03 1.00 1.02 1.00 0.99 0.99 1.00 0.99

TVP-VAR-DMS, λ = 0.99, βT+h ∼ RW 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SMALL VAR

TVP-VAR, λ = 0.99, βT+h = βT 1.16 1.02 1.14 1.19 1.01 0.99 1.16 1.11

TVP-VAR, λ = 0.99, βT+h ∼ RW 1.16 1.00 1.16 1.20 1.02 1.01 1.14 1.11

VAR, heteroskedastic 1.19 1.00 1.12 1.09 1.00 0.96 1.05 1.01

VAR, homoskedastic 1.25 1.10 1.15 1.11 0.99 0.96 1.04 1.03

MEDIUM VAR

TVP-VAR, λ = 0.99, βT+h = βT 1.18 1.01 1.10 1.06 0.98 0.99 0.98 0.97

TVP-VAR, λ = 0.99, βT+h ∼ RW 1.20 1.01 1.12 1.06 0.97 1.00 0.98 0.98

VAR, heteroskedastic 1.17 0.97 1.05 1.02 0.97 1.00 0.98 0.96

VAR, homoskedastic 1.25 1.06 1.11 1.03 1.00 1.01 0.96 0.98

LARGE VAR

TVP-VAR, λ = 0.99, βT+h = βT 1.07 0.94 1.06 0.96 0.98 1.00 0.91 0.92

TVP-VAR, λ = 0.99, βT+h ∼ RW 1.05 0.94 1.05 0.97 0.98 1.00 0.92 0.91

VAR, heteroskedastic 1.07 0.95 1.06 0.97 0.99 0.99 0.92 0.91

VAR, homoskedastic 1.13 0.98 1.06 0.99 1.01 1.02 0.92 0.92

BENCHMARK MODELS

RW 1.91 2.16 1.92 1.87 1.64 1.98 2.37 1.93

Small VAR OLS 1.76 1.47 1.59 2.11 1.78 1.69 2.23 2.03

Predictive likelihoods are presented in Table 4, relative to TVP-VAR-DMS. To be precise, the

numbers in Table 4 are the sum of log predictive likelihoods for a specific model minus the

sum of log predictive likelihoods for TVP-VAR-DMS. The fact that almost all of these numbers

are negative supports the main story told by the MSFEs: TVP-VAR-DMS is forecasting well at

most forecast horizons. At h = 1, TVP-VAR-DMS forecasts best by a considerable margin and at

other forecast horizons it beats other TVP-VAR approaches. However, there are some important

differences between predictive likelihood and MSFE results that are worth noting.

The importance of allowing for heteroskedastic errors in getting the shape of the predictive
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density correct is clearly shown by the poor performance of homoskedastic models in Table

4. In fact, the heteroskedastic VAR exhibits the best forecast performance at many horizons.

However, the dimensionality of this best forecasting model differs across horizons. For in-

stance, at h = 2 the small model forecasts best, but at h = 3 the medium model wins and

at h = 4 it is the large heteroskedastic VAR. This suggests, even when the researcher is using

a VAR (instead of a TVP-VAR), doing DMS over VARs of different dimension still might be a

useful as a conservative forecasting device which can forecast well in a context where there is

uncertainty over the dimension of the VAR.
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Table 4: Relative Predictive Likelihoods, Total (all 3 variables)

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

FULL MODEL

TVP-VAR-DMS, λ = 0.99, βT+h = βT 0.84 0.91 2.47 4.03 4.76 3.30 6.69 4.11

TVP-VAR-DMS, λ = 0.99, βT+h ∼ RW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SMALL VAR

TVP-VAR, λ = 0.99, βT+h = βT -6.71 4.62 -3.70 -2.72 2.73 1.93 -0.32 0.68

TVP-VAR, λ = 0.99, βT+h ∼ RW -5.95 4.84 -1.95 -2.56 2.20 -0.92 -1.04 -3.32

VAR, heteroskedastic -6.18 6.86 -1.39 1.57 12.00 6.24 5.87 9.11

VAR, homoskedastic -47.44 -29.97 -27.74 -22.87 -15.96 -18.50 -18.92 -15.93

MEDIUM VAR

TVP-VAR, λ = 0.99, βT+h = βT -23.55 0.79 -1.58 2.84 11.31 5.85 7.69 9.27

TVP-VAR, λ = 0.99, βT+h ∼ RW -23.22 -0.09 -3.16 -0.54 11.33 5.07 8.13 9.80

VAR, heteroskedastic -20.89 1.08 5.07 8.39 15.12 14.02 14.79 14.52

VAR, homoskedastic -58.28 -31.86 -29.35 -21.09 -10.14 -13.94 -7.38 -10.65

LARGE VAR

TVP-VAR, λ = 0.99, βT+h = βT -18.16 -7.81 -6.85 -1.32 3.03 -3.69 1.46 8.33

TVP-VAR, λ = 0.99, βT+h ∼ RW -16.14 -8.25 -9.70 -2.45 -0.24 -7.56 -1.48 2.93

VAR, heteroskedastic -17.30 -1.63 -1.76 8.46 12.46 6.03 10.36 13.24

VAR, homoskedastic -50.33 -37.35 -35.31 -28.60 -17.52 -29.13 -22.05 -20.50

BENCHMARK MODELS

RW - - - - - - - -

Small VAR OLS -52.94 -40.42 -49.99 -52.48 -45.69 -36.48 -37.92 -49.35

5 Conclusion

Our forecasting exercise, which involves using a large TVP-VAR and doing DMS over prior

shrinkage and TVP-VAR dimension, indicates that our methods are a feasible and attractive

way of addressing the challenges of working with a parameter-rich TVP-VAR. In it, we worked

with a relatively small model space. Many extensions of the model space are possible with-

out altering the algorithm presented in this paper. For instance, the model space could be

augmented with VARs as well as TVP-VARs. Or models with different lag lengths could be
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included. Homoskedastic versions of each model could also be included. Other extensions

would require slight modifications. For instance, our TVP-VAR estimation method involves a

single forgetting factor, λ, controlling the degree of evolution of VAR coefficients. Allowing for

different forgetting factors for each equation or even each coefficient would also be possible

(see, e.g., the component discounting approach described in West and Harrison, 1997, pages

196-198). All in all, the approaches described in this paper offer a promising groundwork

for the development of many approaches to addressing the challenges of modern empirical

macroeconomics.
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A Data Appendix

All series were downloaded from St. Louis’ FRED database and cover the quarters 1959:Q1 to

2010:Q2. Some series in the database were observed only on a monthly basis and quarterly

values were computed by averaging the monthly values over the quarter. All variables are

transformed to be approximately stationary following Stock and Watson (2008). In particular,

if zi,t is the original untransformed series, the transformation codes are (column Tcode below):

1 - no transformation (levels), xi,t = zi,t; 2 - first difference, xi,t = zi,t − zi,t−1; 3 - second

difference, xi,t = zi,t − zi,t−2; 4 - logarithm, xi,t = log zi,t; 5 - first difference of logarithm,

xi,t = ln zi,t − ln zi,t−1; 6 - second difference of logarithm, xi,t = ln zi,t − ln zi,t−2.

Table A1: Series used in the Small VAR with n = 3

Series ID Tcode Description

GDPC96 5 Real Gross Domestic Product

CPIAUCSL 6 Consumer Price Index: All Items

FEDFUNDS 2 Effective Federal Funds Rate

Table A2: Additional series used in the Medium VAR with n = 7

Series ID Tcode Description

PMCP 1 NAPM Commodity Prices Index

BORROW 6 Borrowings of Depository Institutions from the Fed

SP500 5 S&P 500 Index

M2SL 6 M2 Money Stock
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Table A3: Additional Series used in the Large VAR with n = 25

Series ID Tcode Description

PINCOME 6 Personal Income

PCECC96 5 Real Personal Consumption Expenditures

INDPRO 5 Industrial Production Index

UTL11 1 Capacity Utilization: Manufacturing

UNRATE 2 Civilian Unemployment Rate

HOUST 4 Housing Starts: Total: New Privately Owned Housing Units

PPIFCG 6 Producer Price Index: All Commodities

PCECTPI 5 Personal Consumption Expenditures: Chain-type Price Index

AHEMAN 6 Average Hourly Earnings: Manufacturing

M1SL 6 M1 Money Stock

OILPRICE 5 Spot Oil Price: West Texas Intermediate

GS10 2 10-Year Treasury Constant Maturity Rate

EXUSUK 5 U.S. / U.K Foreign Exchange Rate

GPDIC96 5 Real Gross Private Domestic Investment

PAYEMS 5 Total Nonfarm Payrolls: All Employees

PMI 1 ISM Manufacturing: PMI Composite Index

NAPMNOI 1 ISM Manufacturing: New Orders Index

OPHPBS 5 Business Sector: Output Per Hour of All Persons
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